| Chemistry | 1 | | |-----------|---|--| | | | | | 1. | The hybrid | ization state o | of C atom in but | endioic acid is : | |-----|---|--|---|--| | | (1) sp ² | (2) sp ³ | (3) both two | (4) sp | | 2. | (1) n-pe
(2) 2, 2-
(3) 2, 3- | ntane
dimethy 1 proj
dimethy 1 buta | s not a Isomer of
pane
ane | pentane : | | | (4) 2-m | ethy I butane | | | | 3. | The oxidati
(1) -2 and - | on number of
4 (2) | C atom in Ch ₂ C
0 and -4 (3) 0 | CI ₂ and CCI ₄ are respectively:
and 4 (4) 2 and 4 | | 4. | Which of th | ne following d | issolves in lonic | solvents : | | | $(1) C_6 H_5$ | (2) CH ₃ OH | | $(4) C_5H_{12}$ | | 5 | The contug | ate acid of HS | Site · | | | | | | (3) both two | (4) none | | | | A | | | | | (1) NH ₄
(2) NH ₄
(3) NH ₄ | a suitable Ind
OH and HCI
OH and HCOO
OH and C ₂ H ₄ O
OH and C ₂ O ₄ H ₂ | OH
O ₂ | ed in which of the following type of | | 7. | Which of th | ne following is | iron are : | | | | (1) Malachi | | | iderite (4) Limonite | | 8. | ml.of 3.0 M | | 0 ml. of 4.0 M B | s in the resulting solution of 300
SaCl ₂ will be :
(4) 3.5 M | | 9. | Which of th | ne following h | as least bond en | ergy: | | | $(1) N_2^{-2}$ | (2) N ₂ | (3) N_2^+ | (4) N ₂ | | | | ne following s | pecies has highe | st bond energy : | | 10. | . Which of th | | | By . | | 10. | (1) O ₂ -2 | (2) O2+ | | (4) O ₂ | | 12. Which of th
(1) CCI ₂
(2) CCI ₄
(3) CF ₄
(4) Acet | F ₂ | mpound is t | sed as refrige | erant : | |--|--|------------------------|----------------------------------|--| | 13. Which of th | e following is v
(2) CH ₃ -C≡C | | CU -CU | A CH C-C CH | | $(1) C_6 H_6$ | (2) CH ₃ -C=C | п (э | Cn ₂ -Cn ₂ | (4) CH ₃ -C≡C-CH ₃ | | 14. L.P.G. mair | | | | | | (1) Methane | (2) Hydroger | (3) Acety | lene (4 | 4) Butane | | 15. The solubili | ty product of (| CaCoa is 5 x | 10-9. The solu | ubility will be : | | (1) 2.5 x 10 | (2) 7 | x 10 ⁻⁵ (3) | 2.5 x 10 ⁻⁴ | (4) 2.2 x 10 ⁻⁹ | | 16. The outer e | lectronic config | guration of | alkali earth n | netals is : | | (1) nd ¹⁰ | (2) ns ¹ | (3) np ⁶ | (4) ns ₂ | | | 17. The nature | of 2, 4, 6-trinit | rophenol is | | | | (1) Neutral | (2) Basic | (3) Acidio | (4) Weak | basic | | 18. Which of th | e following gre | oup ts share | ortho and pa | ara directive : | | (1)-C ₆ H ₅ | (2)-OH | (3) -CH ₃ | (4) -CI | | | (1) comb | oustion
ional distillation
ion | Albandin. | rocarbons ar | e found from petroleum : | | | | | | % 2-methyl hexane and s sample will be : | | 21. In which of | the following l | nalogens p- | lectrons does | not take part in | | resonance: | | | | | | (1) CH ₂ =CH | I-CH ₂ Cl | (2) BrC ₆ H | | | | (3) C ₆ H ₅ Cl | | (4) CH ₂ =0 | CHCI | | | 22. Which of th | | | | | | | solution HCHC | | | | | | O is least react | | | | | | B.P. of isovarelaboiling point of | | | at of aldehydes | | 22 75 14 - 04 | | | | 2 | | 23. If $n + t = 8t$ | (2) 9 | (3) 16 | (4) 25 | • | | (.)4 | (2) | (2) 10 | (4) 23 | | | Ale, KOH | 2Cl ₂ Ca(| | | | | |---|-----------------------|--------------------------------|-----------------------------------|--------------------------------------|---| | 24. A B
(1) Lewsite | (2) Wastran | | compound C | (4) Both 2 and 3 | | | (1) Lewsite | (2) Westion | (5) Acetyleik | e tetta cinoride | (4) Both 2 and 3 | | | 25. Which of the | | | d: | | | | (1) BeCl ₂ | (2) MgCl ₂ | (3) CaCl ₂ | (3) BaCl ₂ | | | | 26. The laughing | gas is: | | | | | | (1) N ₂ O ₄ | (2) NO | (3) N ₂ O | (4) N ₂ O ₅ | | | | 27. The hydroge | n ion concent | ration of a solu | ution is 3.98 x | 10 ⁻⁶ mole per liter. The | | | | his solution w | | | | | | (1) 6.0 | (2) 5.8 | (3) 5.4 | (4) 5.9 | | | | 28. The reaction | of sodium ac | etate and soda | lime gives : | | | | | | (3) Methane | | | | | 29. Which of the | following act | ds does not co | ntain – COOH | group : | | | | acid (2) B | | | B I | | | (3) Lactic acid | | ecinnic acid | | | | | 30. Which of the | following con | mnound of you | one door not e | viete . | | | (1) XeF ₆ | | | (4) XeF ₂ | Alsts . | | | (1) 11010 | (2) / (2) | (4) 11613 | (4) 2001 | | | | 31. FeSO ₄ , 7H ₂ O | | | | | | | (1) Mohr's sa | lt (2) Blue v | itriol (3) G | reen vitriol (4) | White vitriol | | | 32. The solution | of BiCl3 in di | II. HCI when d | iluted with wa | ter white precipitate is | 5 | | formed which | h is : | | | | | | (1) Bismith or | | (2) Bismith o | | | | | (3) Bismith h | ydroxide | (3) none of th | nese | | | | 33. The stronges | | | | | | | (1) acetic | | | | | | | | roacetic acid | | | | | | | racetic acid | | | | | | (4) monoc | chloroacetic ac | eid | | | | | 34. The false stat | | | | | | | | | m polymerizati | | | | | | | elimination read | | 1.45.2 | | | | | se bromine wat | lilute KMnO ₄ s | olution | | | (4) It does | s not decolouri | se bromine war | iei | | | | 35. Which of the | | | : | | | | (1) C ₆ H ₅ NH ₂ | (2) C | H ₃ NH ₂ | | | | | (3) NH ₃ | (4) CH ₃ CONH ₂ | |---|---| | 36. Which of the follow easily: | ing aromatic compound gives sulphonation reaction very | | (1) Chlorobenzene | (2) Nitrobenzene (3) Toluene (4) benzene | | 37. The geometry of 13- | ls: (2) Linear (3) Tetrahedral (4) T-shape | | S 1 | | | £60 days will become | dio active element is 140 days. 1 gm. of this element after | | (1) $\frac{1}{16}$ gm (2) | $\frac{1}{4}$ gm (3) $\frac{1}{8}$ gm. (4) $\frac{1}{2}$ gm. | | 39. The volume concent
(1) 5 (2) 11 | tration of hydrogen peroxide 6.8% concentration will be : .2 (3) 22.4 (4) 20 | | | ing on combustion give maximum energy :
opane (3) Methane (4) Butane | | | AICI, | | (1) Gattermann
(3) Friedel-Craft | C6H5CH3 + HCI The name of above reaction is : (2) Reimer-tiemann (4) Cannizaro | | 42. The oxidation state
(1) + 4 (2) + 3 | of Cr in $K_2Cr_2O_7$ is:
3 (3) +6 (4) +5 | | 43. The natural rubber (1) 1, 3- butadiene | is the polymer of: (2) polyamide (3) isoprene (4) none of these | | 44. Nylone-66 is a:
(1) polyester (2) po | lyamide (3) polyacrylate (4) none of these | | 45. 2NO(g) + CI ₂ (g) → | 2 NOCI The equilibrium constant for this reaction is : | | (1) $K_c = \frac{[NOCI]^2}{[NO]^2[CI_2]}$ | (2) $K_c = \frac{[NOCI]^2}{[2NO]^2[CI_2]}$ | | (3) $K_c = \frac{[NOCI]^2}{[NO]^2 [CI^2]}$ | $(4) K_c = \underbrace{[2NOCI]}_{[2NO][CI]}$ | | 6. C ₆ H ₆ + CO + HCI (1) anhydrans ZnO (3) anhydrous AICO: | • C ₆ H ₅ CHO + HCI here A is :
(2) V ₂ O ₅ /450 ⁰ C
(4) solid KOH | | |) HCN | (3) both | (4) non | is:
e of these | | |--|--|--|---|-------------------------------|------------------------------------| | 48. In which of the | following | carbon at | om (asterisk) i | s asymme | etric : | | (1) CH ₃ CH ₂ C | CH (CH ₃) | CH ₂ OH | | | | | (2) CH ₃ CH ₂ C | CH (CH ₃) | CHOH | | | | | (3) CH ₃ CH ₂ C | | | | | | | (4) CH ₃ CH ₂ C | CH (CH ₃) | CH ₂ OH | | | | | 49. Benzene reacts | | | | | | | (1) Acetophenon | e (2) | Toluene | (3) Benzyl Chl | oride (4) | Chlorobenzene | | 50. Which of the fol | | | | | | | (1) H_2S (2) |) HNO ₃ | (3) H ₂ C | $(4) K_2C$ | r ₂ O ₇ | | | 51. In which of the mechanism is m | | | ride the possil | oility of S! | N ₁ reaction | | (1) (CH ₃) ₂ CHCI | | CH3)3C-C | (3) CH ₃ | CI (4) | CH ₃ CH ₂ CI | | 52. The energy proc | luced rea | lated to m | ass decay of 0. | 02 amu is | : | | (1) 28.2 MeV | (2) 9 | 31 MeV | (3) 18.62 MeV | (4) | none of these | | 53. The mole of hyd | rogen lor | in 50 ml. | of 0.1 M HCI | solution v | vill be : | | (1) 5 x 10 ² (2) 54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic | dnly cons
alcohol
hydrocari
hydrocari | ist of: | of 0.1 M HCI
(3) 5 x 10 ³ | solution v
(4) 5 x 10 | vill be : | | (1) 5 x 10 ² (2) 54. Petroleum Is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of the | dnly cons
alcohol
hydrocarl
hydrocarl
hese | ist of: | of 0.1 M HCI
(3) 5 x 10 ³ | solution v
(4) 5 x 10 | vill be : | | (1) 5 x 10 ² (2 54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t | 2) 5 x 10 ⁻ dinly cons alcohol hydrocarl hydrocarl hese | ist of : | (3) 5 x 10 ³ | (4) 5 x 10 | 2 | | (1) 5 x 10 ² (2) 54. Petroleum Is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t 5. C ₆ H ₆ OCH ₃ + HI | 2) 5 x 10 ⁻ dinly cons alcohol hydrocarl hydrocarl hese | ist of : | (3) 5 x 10 ³ | (4) 5 x 10 | 2 | | (1) 5 x 10 ² (2 54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t 55. C ₆ H ₆ OCH ₃ + HI vill be: | dnly cons
alcohol
hydrocarl
hydrocarl
hese | ist of: bon bon + | (3) 5 x 10 ³ | (4) 5 x 10 | 2 | | (1) 5 x 10 ² (2) 54. Petroleum Is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t 5. C ₆ H ₆ OCH ₃ + HI | 2) 5 x 10° dinly cons alcohol hydrocarl hydrocarl hese | 3 bon bon (2) C ₆ H | (3) 5 x 10 ³ | (4) 5 x 10 | 2 | | (1) 5 x 10 ² (2 54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t 5. C ₆ H ₆ OCH ₃ + HI vill be: (1) C ₆ H ₅ I+CH ₃ O | 2) 5 x 10° dinly cons alcohol hydrocarl hydrocarl hese | 3 bon bon (2) C ₆ H | (3) 5 x 10 ³ The prod | (4) 5 x 10 | 2 | | (1) 5 x 10 ² (2) 54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t 5. C ₆ H ₆ OCH ₃ + HI— (III be: (1) C ₆ H ₃ I+CH ₃ O (3) C ₆ H ₅ OH+CH | dinly cons
alcohol
hydrocarl
hydrocarl
hese
\(\Delta \Delta \) | 3 bon bon (2) C ₆ H (4) C ₆ H | (3) 5 x 10 ³ The prod | (4) 5 x 10 | e above reactio | | (1) 5 x 10 ² (2 54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t 55. C ₆ H ₆ OCH ₃ + HI— vill be: (1) C ₆ H ₅ I+CH ₃ O (3) C ₆ H ₅ OH+CH 56 F3 is: | dinly cons alcohol hydrocard hydrocard hese $\Delta\Delta$ | 3 bon bon (2) C ₆ H (4) C ₆ H | The prod | ucts in th | e above reaction | | (1) 5 x 10 ² (2 54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t 5. C ₆ H ₆ OCH ₃ + HI— vill be: (1) C ₆ H ₅ I+CH ₃ O (3) C ₆ H ₅ OH+CH 56 F3 is: (1) Bronsted bas | dinly cons
alcohol
hydrocarl
hydrocarl
hese
$\Delta\Delta$ | 3 bon bon (2) C ₆ H (4) C ₆ H Lewis base | The prod | ucts in the | e above reaction | | (3) $Na_2\{Ag(S_2O_3)_2\}$ | (4) Na ₃ [Ag(S ₂ O ₃) ₃] | |--|---| | 59. Molecular oxygen is : | | | (1) ferro magnetic (2) diamagn | etic (3) para magnetic (4) non magnetic | | 60. Bonds in acetylene are : | | | (1) 2π bonds (2) one π bo | nd (3) 3π bonds (4) none of these | | (1) It gives tertiary alcohol (2) It gives tertiary alcohol (3) It gives secondary alcohol | with acetamide
with acetone | | (4) It gives primary alcohol | | | 62. Which of the following alkan
(1) C ₂₀ H ₄₂ (2) C ₃ H ₈ | e exists is liquid state at normal temperature : $(3) \ C_8 H_{18} \qquad (4) \ CH_4$ | | 63. The solubility of AgCI at 25 ⁰ (1) Potassium chloride solu (2) AgNO ₃ solution (3) Water (4) All above | C will be maximum in : | | 64. The weight of a benzene mole
(1) 78 gm. (2) 7.8 gm. | | | 65. CuFeS ₂ is : (1) iorn pyrites (2) n | nalachite (3) chalcosite (4) chalcopyrites | | 66. Primary halides follow the fo
(1) SN ₁ (2) SN ₂ | llowing reaction mechanism: (3) both (4) none of these | | 67. C and Si belong to the same g (1) liquid (2) gas | group of periodic table, CO ₂ is a gas and SiO ₂ is a: (3) solid (4) none of these | | 68. H ₂ S is a gas while H ₂ O is a lic
(1) there is association due
(2) bond energy of OH high
(3) the ionization potential
(4) the electro negativity of | to hydrogen bonding
n
of oxygen is high | | 69. "The negative part of the mo | lecule adding to the double bond goes to that
atom which is linked to the least number of
t is related to : | | (4) none of these | | | | |---|--|---|-----------| | 70. The conjugate base of ! | NH3 is: | | | | $(1) N_2 H_4$ (2) N | | (4) NH ₂ ⁺ | | | 71. (a) N ₂ and (b) C ₂ H ₂ . Th | e nos. of π and σ h | ond in the molecules are respec | tively: | | (1) (a) 2,2 (b) 2,2 | (2) (a) 1,2 (b) 2,1 | 100 | 700 | | (3) (a) 2,1 (b) 2,3 | (4) (a) 2,1 (b) 2,1 | | | | 72. In which of the following atoms: | ng compound there | e are maximum no. of sp ² hybrid | 1 C | | (1) Benzene | (2) 1,3,5-hexatries | ne | | | (2) 1,2,4-hexatriene | (4) both 1 and 2 | | | | 73. The shape of the molec | ule having hybrid | orbitals of 20% character will b | e: | | (1) octahedral | (2) tetrahedral | | | | (3) square planer | (4) triangular bipy | yramidal | | | 74. The pH of a solution is
the pH value will be : | 5. If the dilution o | of this solution is increased by 10 | 0 times, | | (1) 5 (2) 7 | (3) 9 | (4) 8 | | | 75. The required amount of hydrocarbon is 50 ml. The (1) C ₂ H ₂ (2) C ₂ 76. The formula of Cel (1) SrSO ₄ (2) Sr | hydrocarbon will
H ₄ (3) C ₂ H ₆
lestine is : | | | | 327 1 327 | | | | | 77. CuCl ₂ + → Cu + C
(1) 4 faraday | | mount of electricity for this reac
) 1 faraday (4) 3 faraday | tion is : | | 78. Nitrogen does not i | | | | | (1) The bondener | rgy of N≡N is very l | high | | | | bitals are not presen | nt | | | (3) N belongs to
(4) There is inert | | | | | | | by 10° C, the rate of reaction w | dll be : | | (1) lowered by 2 | times | | | | (2) increased by | 2 times | | | | (3) lowered by 1 | 0 times | | | | (4) increased by | 10 times | | | | 80. Which of the follow chloride: | ving gives red prec | cipitate with ammonical cuprous | • | | (1) Propane (2) Et | hane (3) Methan | ne (4) Acetylene | | | 81. [Cu(NH ₃) ₄
(1) dsp ² | (2) sp ³ d | (3) dsp ³ | dization: (4) sp ³ | |--|---|------------------------------------|---| | | | and the second | ns in it. Which of the following ion is | | capable to | precipitate all | of above when | added in this solution : | | (1) Pb ²⁺ | (2) Ba ²⁺ | (3) Hg ²⁺ | (4) Cu ²⁺ | | 83. Fool's gold | ls: | 1502211000000 | 1000 W. 1200 | | (1) Cu ₂ S | (2) FeS ₂ | (3) Al ₂ O ₅ | (4) CuFeS ₂ | | 84. In which o | f the following | compound th | e central atom is in sp ² hybrid state : | | (1) OF ₂ | (2) HgCl ₂ | (3) XeF ₂ | (4) NH ₂ ⁺ | | 85. The number | er of alkenyl g | roups possible | from C ₄ H ₇ are : | | (1) 7 | (2) 5 | (3) 3 | (4) 8 | | (2) Anti
(3) Blea | thyl lead mixed
ling agent
knocking agen
ching agent
e of these | | rorks as : | | 87. The alkalin | ne hydrolysis o | | | | (1) dehydro | genation (2) d | enydration (3) | esterification (4) saponification | | (1) 6.71 x 10 | 0^{-3} (2) 1 | .6x10-3 | acid will be: $(K_a = 1.8 \times 10^{-5})$ | | (3) 0.4x1.8x | (4) 1 | .8x10 ⁻⁵ | | | 89. Haber pro | cess is used for | r production o | f which of the following: | | (1) NH ₃ | (2) HNO ₃ | (3) H ₂ SO ₄ | (4) O ₃ | | (1) NH ₄
(2) NH ₄ | ng titrations it
OHand HCI
OH and CH ₃ CO
H and HCI | can be used a | and the pH range is 8-10. In which of
s an indicator : | | 91. Number of | | | | | (1) pb^{2+} | (2) Hg^{2+} | (3) Ba ²⁺ | (4) Cu ²⁺ | | 92. Which of t | he following sp | pecies shows ti | ne maximum magnetic moment : | | (1) Mn ⁺⁶ | (2) Ni ²⁺ | (3) Fe^{3+} | (4) Ag ⁺ | | 93. K sp value | of CaF2 is 3.75 | x 10 ¹¹ The sol | ubility will be : | | (1) 1.45x10 ⁻¹¹ m | nol/litre-1 | | |--|--|-----| | (2) 3.45x10 ⁻⁴ mc | ol/liter* | | | (3) 2.05x10 ⁻⁴ mc | ol/liter* | | | (4) 3.75 x 10 ⁻¹¹ r | mol/liter* | | | 94. When Pb ₃ O ₄ is hea
(1) pbO ₂ and pb(
(2) pbO and pb(1
(3) pbO ₂ | | | | (4) pbO | | | | 95. C-H bond length is
(1) Acetylene (2) M | s least in :
Methane (3) Ethylene (4) Ethane | | | 96. The minimum nos. isomerism will be: | 7 - 1 TO SELECTION - DESCRIPTION DESCRIPTI | | | (1) Seven (2) fo | our (3) six (4) five | | | 97. Which of the follow CaCl ₂ : | wing organic compound could not be dried by anhydro | ous | | (1) ethanol (2) be | enzene (3) chloroform (4) ethyl acetate | | | 98. Which of the follow
water: | wing compound forms white precipitate with bromine | | | (1) Nitrobenzene | (2) Phenol (3) Benzene (4) all above | | | 99. Gypsum is: | The second secon | | | (1) CaSO ₄ .H ₂ O | (2) CaSO ₄ . 2H ₂ O | | | (3) 2CaSO ₄ . 2H ₂ O | (4) CaSO ₄ | | | 100.Which of the follow | wing carbonium ion is most stable : | | | (1) CH ₃ -C—CH ₃ | (2) CH ₃ CH ₂ | | | CH ₃ | | | | (3) CH ₃ 0CH-CH ₃ | (4) CH ₃ | | | | | | ## ANSWER SHEET | | | | | 4 84 75 | | | | | | | |---------|--------|--------|--------|---------|--------|--------|-----------|--------|--------|--------| | 1.(2) | 2.(3) | 3.(3) | 4.(2) | 5.(2) | 6.(4) | 7.(1) | 8.(3) | 9.(1) | 10.(4) | 11.(1) | | 12.(1) | 13.(2) | 14.(4) | 15.(2) | 16.(4) | 17.(3) | 18.(2) | 19.(2) | 20.(2) | 21.(1) | 22.(2) | | 23.(3) | 24.(4) | 25.(4) | 26.(3) | 27.(3) | 28.(3) | 29.(2) | 30.(3) | 31.(3) | 32.(1) | 33.(2) | | 34.(3) | 35.(2) | 36.(3) | 37.(2) | 38.(1) | 39.(4) | 40.(4) | 41.(3) | 42(3) | 43.(3) | 44.(2) | | 45.(3) | 46.(3) | 47.(1) | 48.(1) | 49.(1) | 50.(1) | 51.(2) | 52.(1) | 53.(2) | 54.(3) | 55.(3) | | 56.(3) | 57.(4) | 58.(3) | 59.(3) | 60.(1) | 61.(1) | 62.(3) | 63.(3) | 64.(3) | 65.(4) | 66.(1) | | 67.(3) | 68.(1) | 69.(1) | 70.(2) | 71.(3) | 72.(4) | 73.(4) | 74.(2) | 75.(1) | 76.(2) | 77.(2) | | 78.(2) | 79.(2) | 80.(4) | 81.(1) | 82.(1) | 83.(2) | 84.(4) | 85.(4) | 86.(2) | 87.(4) | 88.(1) | | 89.(1) | 90.(3) | 91.(1) | 92.(3) | 93.(3) | 94.(1) | 95.(1) | 96.(4) | 97.(1) | 98.(2) | 99.(2) | | 100.(1) | | | | | | | 100011000 | | | |