| Chemistry | 1 |  |
|-----------|---|--|
|           |   |  |

| 1.  | The hybrid                                                        | ization state o                                                                                                                              | of C atom in but                              | endioic acid is :                                                              |
|-----|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|
|     | (1) sp <sup>2</sup>                                               | (2) sp <sup>3</sup>                                                                                                                          | (3) both two                                  | (4) sp                                                                         |
| 2.  | (1) n-pe<br>(2) 2, 2-<br>(3) 2, 3-                                | ntane<br>dimethy 1 proj<br>dimethy 1 buta                                                                                                    | s not a Isomer of<br>pane<br>ane              | pentane :                                                                      |
|     | (4) 2-m                                                           | ethy I butane                                                                                                                                |                                               |                                                                                |
| 3.  | The oxidati<br>(1) -2 and -                                       | on number of<br>4 (2)                                                                                                                        | C atom in Ch <sub>2</sub> C<br>0 and -4 (3) 0 | CI <sub>2</sub> and CCI <sub>4</sub> are respectively:<br>and 4 (4) 2 and 4    |
| 4.  | Which of th                                                       | ne following d                                                                                                                               | issolves in lonic                             | solvents :                                                                     |
|     | $(1) C_6 H_5$                                                     | (2) CH <sub>3</sub> OH                                                                                                                       |                                               | $(4) C_5H_{12}$                                                                |
| 5   | The contug                                                        | ate acid of HS                                                                                                                               | Site ·                                        |                                                                                |
|     |                                                                   |                                                                                                                                              | (3) both two                                  | (4) none                                                                       |
|     |                                                                   | A                                                                                                                                            |                                               |                                                                                |
|     | (1) NH <sub>4</sub><br>(2) NH <sub>4</sub><br>(3) NH <sub>4</sub> | a suitable Ind<br>OH and HCI<br>OH and HCOO<br>OH and C <sub>2</sub> H <sub>4</sub> O<br>OH and C <sub>2</sub> O <sub>4</sub> H <sub>2</sub> | OH<br>O <sub>2</sub>                          | ed in which of the following type of                                           |
| 7.  | Which of th                                                       | ne following is                                                                                                                              | iron are :                                    |                                                                                |
|     | (1) Malachi                                                       |                                                                                                                                              |                                               | iderite (4) Limonite                                                           |
| 8.  | ml.of 3.0 M                                                       |                                                                                                                                              | 0 ml. of 4.0 M B                              | s in the resulting solution of 300<br>SaCl <sub>2</sub> will be :<br>(4) 3.5 M |
| 9.  | Which of th                                                       | ne following h                                                                                                                               | as least bond en                              | ergy:                                                                          |
|     | $(1) N_2^{-2}$                                                    | (2) N <sub>2</sub>                                                                                                                           | (3) $N_2^+$                                   | (4) N <sub>2</sub>                                                             |
|     |                                                                   | ne following s                                                                                                                               | pecies has highe                              | st bond energy :                                                               |
| 10. | . Which of th                                                     |                                                                                                                                              |                                               | By .                                                                           |
| 10. | (1) O <sub>2</sub> -2                                             | (2) O2+                                                                                                                                      |                                               | (4) O <sub>2</sub>                                                             |

| 12. Which of th<br>(1) CCI <sub>2</sub><br>(2) CCI <sub>4</sub><br>(3) CF <sub>4</sub><br>(4) Acet | F <sub>2</sub>                               | mpound is t            | sed as refrige                   | erant :                                  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------|----------------------------------|------------------------------------------|
| 13. Which of th                                                                                    | e following is v<br>(2) CH <sub>3</sub> -C≡C |                        | CU -CU                           | A CH C-C CH                              |
| $(1) C_6 H_6$                                                                                      | (2) CH <sub>3</sub> -C=C                     | п (э                   | Cn <sub>2</sub> -Cn <sub>2</sub> | (4) CH <sub>3</sub> -C≡C-CH <sub>3</sub> |
| 14. L.P.G. mair                                                                                    |                                              |                        |                                  |                                          |
| (1) Methane                                                                                        | (2) Hydroger                                 | (3) Acety              | lene (4                          | 4) Butane                                |
| 15. The solubili                                                                                   | ty product of (                              | CaCoa is 5 x           | 10-9. The solu                   | ubility will be :                        |
| (1) 2.5 x 10                                                                                       | (2) 7                                        | x 10 <sup>-5</sup> (3) | 2.5 x 10 <sup>-4</sup>           | (4) 2.2 x 10 <sup>-9</sup>               |
| 16. The outer e                                                                                    | lectronic config                             | guration of            | alkali earth n                   | netals is :                              |
| (1) nd <sup>10</sup>                                                                               | (2) ns <sup>1</sup>                          | (3) np <sup>6</sup>    | (4) ns <sub>2</sub>              |                                          |
| 17. The nature                                                                                     | of 2, 4, 6-trinit                            | rophenol is            |                                  |                                          |
| (1) Neutral                                                                                        | (2) Basic                                    | (3) Acidio             | (4) Weak                         | basic                                    |
| 18. Which of th                                                                                    | e following gre                              | oup ts share           | ortho and pa                     | ara directive :                          |
| (1)-C <sub>6</sub> H <sub>5</sub>                                                                  | (2)-OH                                       | (3) -CH <sub>3</sub>   | (4) -CI                          |                                          |
| (1) comb                                                                                           | oustion<br>ional distillation<br>ion         | Albandin.              | rocarbons ar                     | e found from petroleum :                 |
|                                                                                                    |                                              |                        |                                  | % 2-methyl hexane and s sample will be : |
| 21. In which of                                                                                    | the following l                              | nalogens p-            | lectrons does                    | not take part in                         |
| resonance:                                                                                         |                                              |                        |                                  |                                          |
| (1) CH <sub>2</sub> =CH                                                                            | I-CH <sub>2</sub> Cl                         | (2) BrC <sub>6</sub> H |                                  |                                          |
| (3) C <sub>6</sub> H <sub>5</sub> Cl                                                               |                                              | (4) CH <sub>2</sub> =0 | CHCI                             |                                          |
| 22. Which of th                                                                                    |                                              |                        |                                  |                                          |
|                                                                                                    | solution HCHC                                |                        |                                  |                                          |
|                                                                                                    | O is least react                             |                        |                                  |                                          |
|                                                                                                    | B.P. of isovarelaboiling point of            |                        |                                  | at of aldehydes                          |
| 22 75 14 - 04                                                                                      |                                              |                        |                                  | 2                                        |
| 23. If $n + t = 8t$                                                                                | (2) 9                                        | (3) 16                 | (4) 25                           | •                                        |
| (.)4                                                                                               | (2)                                          | (2) 10                 | (4) 23                           |                                          |

| Ale, KOH                                          | 2Cl <sub>2</sub> Ca(  |                                |                                   |                                      |   |
|---------------------------------------------------|-----------------------|--------------------------------|-----------------------------------|--------------------------------------|---|
| 24. A B<br>(1) Lewsite                            | (2) Wastran           |                                | compound C                        | (4) Both 2 and 3                     |   |
| (1) Lewsite                                       | (2) Westion           | (5) Acetyleik                  | e tetta cinoride                  | (4) Both 2 and 3                     |   |
| 25. Which of the                                  |                       |                                | d:                                |                                      |   |
| (1) BeCl <sub>2</sub>                             | (2) MgCl <sub>2</sub> | (3) CaCl <sub>2</sub>          | (3) BaCl <sub>2</sub>             |                                      |   |
| 26. The laughing                                  | gas is:               |                                |                                   |                                      |   |
| (1) N <sub>2</sub> O <sub>4</sub>                 | (2) NO                | (3) N <sub>2</sub> O           | (4) N <sub>2</sub> O <sub>5</sub> |                                      |   |
| 27. The hydroge                                   | n ion concent         | ration of a solu               | ution is 3.98 x                   | 10 <sup>-6</sup> mole per liter. The |   |
|                                                   | his solution w        |                                |                                   |                                      |   |
| (1) 6.0                                           | (2) 5.8               | (3) 5.4                        | (4) 5.9                           |                                      |   |
| 28. The reaction                                  | of sodium ac          | etate and soda                 | lime gives :                      |                                      |   |
|                                                   |                       | (3) Methane                    |                                   |                                      |   |
| 29. Which of the                                  | following act         | ds does not co                 | ntain – COOH                      | group :                              |   |
|                                                   | acid (2) B            |                                |                                   | B I                                  |   |
| (3) Lactic acid                                   |                       | ecinnic acid                   |                                   |                                      |   |
| 30. Which of the                                  | following con         | mnound of you                  | one door not e                    | viete .                              |   |
| (1) XeF <sub>6</sub>                              |                       |                                | (4) XeF <sub>2</sub>              | Alsts .                              |   |
| (1) 11010                                         | (2) / (2)             | (4) 11613                      | (4) 2001                          |                                      |   |
| 31. FeSO <sub>4</sub> , 7H <sub>2</sub> O         |                       |                                |                                   |                                      |   |
| (1) Mohr's sa                                     | lt (2) Blue v         | itriol (3) G                   | reen vitriol (4)                  | White vitriol                        |   |
| 32. The solution                                  | of BiCl3 in di        | II. HCI when d                 | iluted with wa                    | ter white precipitate is             | 5 |
| formed which                                      | h is :                |                                |                                   |                                      |   |
| (1) Bismith or                                    |                       | (2) Bismith o                  |                                   |                                      |   |
| (3) Bismith h                                     | ydroxide              | (3) none of th                 | nese                              |                                      |   |
| 33. The stronges                                  |                       |                                |                                   |                                      |   |
| (1) acetic                                        |                       |                                |                                   |                                      |   |
|                                                   | roacetic acid         |                                |                                   |                                      |   |
|                                                   | racetic acid          |                                |                                   |                                      |   |
| (4) monoc                                         | chloroacetic ac       | eid                            |                                   |                                      |   |
| 34. The false stat                                |                       |                                |                                   |                                      |   |
|                                                   |                       | m polymerizati                 |                                   |                                      |   |
|                                                   |                       | elimination read               |                                   | 1.45.2                               |   |
|                                                   |                       | se bromine wat                 | lilute KMnO <sub>4</sub> s        | olution                              |   |
| (4) It does                                       | s not decolouri       | se bromine war                 | iei                               |                                      |   |
| 35. Which of the                                  |                       |                                | :                                 |                                      |   |
| (1) C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> | (2) C                 | H <sub>3</sub> NH <sub>2</sub> |                                   |                                      |   |

| (3) NH <sub>3</sub>                                                                 | (4) CH <sub>3</sub> CONH <sub>2</sub>                                                                                           |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 36. Which of the follow easily:                                                     | ing aromatic compound gives sulphonation reaction very                                                                          |
| (1) Chlorobenzene                                                                   | (2) Nitrobenzene (3) Toluene (4) benzene                                                                                        |
| 37. The geometry of 13-                                                             | ls: (2) Linear (3) Tetrahedral (4) T-shape                                                                                      |
| S 1                                                                                 |                                                                                                                                 |
| £60 days will become                                                                | dio active element is 140 days. 1 gm. of this element after                                                                     |
| (1) $\frac{1}{16}$ gm (2)                                                           | $\frac{1}{4}$ gm (3) $\frac{1}{8}$ gm. (4) $\frac{1}{2}$ gm.                                                                    |
| 39. The volume concent<br>(1) 5 (2) 11                                              | tration of hydrogen peroxide 6.8% concentration will be : .2 (3) 22.4 (4) 20                                                    |
|                                                                                     | ing on combustion give maximum energy :<br>opane (3) Methane (4) Butane                                                         |
|                                                                                     | AICI,                                                                                                                           |
| (1) Gattermann<br>(3) Friedel-Craft                                                 | C6H5CH3 + HCI The name of above reaction is :  (2) Reimer-tiemann (4) Cannizaro                                                 |
| 42. The oxidation state<br>(1) + 4 (2) + 3                                          | of Cr in $K_2Cr_2O_7$ is:<br>3 (3) +6 (4) +5                                                                                    |
| 43. The natural rubber (1) 1, 3- butadiene                                          | is the polymer of: (2) polyamide (3) isoprene (4) none of these                                                                 |
| 44. Nylone-66 is a:<br>(1) polyester (2) po                                         | lyamide (3) polyacrylate (4) none of these                                                                                      |
| 45. 2NO(g) + CI <sub>2</sub> (g) →                                                  | 2 NOCI The equilibrium constant for this reaction is :                                                                          |
| (1) $K_c = \frac{[NOCI]^2}{[NO]^2[CI_2]}$                                           | (2) $K_c = \frac{[NOCI]^2}{[2NO]^2[CI_2]}$                                                                                      |
| (3) $K_c = \frac{[NOCI]^2}{[NO]^2 [CI^2]}$                                          | $(4) K_c = \underbrace{[2NOCI]}_{[2NO][CI]}$                                                                                    |
| 6. C <sub>6</sub> H <sub>6</sub> + CO + HCI  (1) anhydrans ZnO  (3) anhydrous AICO: | • C <sub>6</sub> H <sub>5</sub> CHO + HCI here A is :<br>(2) V <sub>2</sub> O <sub>5</sub> /450 <sup>0</sup> C<br>(4) solid KOH |

|                                                                                                                                                                                                                                                                                                    | ) HCN                                                                          | (3) both                                                       | (4) non                                 | is:<br>e of these             |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|-------------------------------|------------------------------------|
| 48. In which of the                                                                                                                                                                                                                                                                                | following                                                                      | carbon at                                                      | om (asterisk) i                         | s asymme                      | etric :                            |
| (1) CH <sub>3</sub> CH <sub>2</sub> C                                                                                                                                                                                                                                                              | CH (CH <sub>3</sub> )                                                          | CH <sub>2</sub> OH                                             |                                         |                               |                                    |
| (2) CH <sub>3</sub> CH <sub>2</sub> C                                                                                                                                                                                                                                                              | CH (CH <sub>3</sub> )                                                          | CHOH                                                           |                                         |                               |                                    |
| (3) CH <sub>3</sub> CH <sub>2</sub> C                                                                                                                                                                                                                                                              |                                                                                |                                                                |                                         |                               |                                    |
| (4) CH <sub>3</sub> CH <sub>2</sub> C                                                                                                                                                                                                                                                              | CH (CH <sub>3</sub> )                                                          | CH <sub>2</sub> OH                                             |                                         |                               |                                    |
| 49. Benzene reacts                                                                                                                                                                                                                                                                                 |                                                                                |                                                                |                                         |                               |                                    |
| (1) Acetophenon                                                                                                                                                                                                                                                                                    | e (2)                                                                          | Toluene                                                        | (3) Benzyl Chl                          | oride (4)                     | Chlorobenzene                      |
| 50. Which of the fol                                                                                                                                                                                                                                                                               |                                                                                |                                                                |                                         |                               |                                    |
| (1) $H_2S$ (2)                                                                                                                                                                                                                                                                                     | ) HNO <sub>3</sub>                                                             | (3) H <sub>2</sub> C                                           | $(4) K_2C$                              | r <sub>2</sub> O <sub>7</sub> |                                    |
| 51. In which of the mechanism is m                                                                                                                                                                                                                                                                 |                                                                                |                                                                | ride the possil                         | oility of S!                  | N <sub>1</sub> reaction            |
| (1) (CH <sub>3</sub> ) <sub>2</sub> CHCI                                                                                                                                                                                                                                                           |                                                                                | CH3)3C-C                                                       | (3) CH <sub>3</sub>                     | CI (4)                        | CH <sub>3</sub> CH <sub>2</sub> CI |
| 52. The energy proc                                                                                                                                                                                                                                                                                | luced rea                                                                      | lated to m                                                     | ass decay of 0.                         | 02 amu is                     | :                                  |
| (1) 28.2 MeV                                                                                                                                                                                                                                                                                       | (2) 9                                                                          | 31 MeV                                                         | (3) 18.62 MeV                           | (4)                           | none of these                      |
| 53. The mole of hyd                                                                                                                                                                                                                                                                                | rogen lor                                                                      | in 50 ml.                                                      | of 0.1 M HCI                            | solution v                    | vill be :                          |
| (1) 5 x 10 <sup>2</sup> (2) <b>54. Petroleum is ma</b> (1) Aliphatic (2) Aromatic (3) Alipnetic                                                                                                                                                                                                    | dnly cons<br>alcohol<br>hydrocari<br>hydrocari                                 | ist of:                                                        | of 0.1 M HCI<br>(3) 5 x 10 <sup>3</sup> | solution v<br>(4) 5 x 10      | vill be :                          |
| (1) 5 x 10 <sup>2</sup> (2)  54. Petroleum Is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of the                                                                                                                                                                                          | dnly cons<br>alcohol<br>hydrocarl<br>hydrocarl<br>hese                         | ist of:                                                        | of 0.1 M HCI<br>(3) 5 x 10 <sup>3</sup> | solution v<br>(4) 5 x 10      | vill be :                          |
| (1) 5 x 10 <sup>2</sup> (2  54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t                                                                                                                                                                                             | 2) 5 x 10 <sup>-</sup> dinly cons alcohol hydrocarl hydrocarl hese             | ist of :                                                       | (3) 5 x 10 <sup>3</sup>                 | (4) 5 x 10                    | 2                                  |
| (1) 5 x 10 <sup>2</sup> (2)  54. Petroleum Is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t  5. C <sub>6</sub> H <sub>6</sub> OCH <sub>3</sub> + HI                                                                                                                                    | 2) 5 x 10 <sup>-</sup> dinly cons alcohol hydrocarl hydrocarl hese             | ist of :                                                       | (3) 5 x 10 <sup>3</sup>                 | (4) 5 x 10                    | 2                                  |
| (1) 5 x 10 <sup>2</sup> (2  54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t  55. C <sub>6</sub> H <sub>6</sub> OCH <sub>3</sub> + HI  vill be:                                                                                                                          | dnly cons<br>alcohol<br>hydrocarl<br>hydrocarl<br>hese                         | ist of: bon bon +                                              | (3) 5 x 10 <sup>3</sup>                 | (4) 5 x 10                    | 2                                  |
| (1) 5 x 10 <sup>2</sup> (2)  54. Petroleum Is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t  5. C <sub>6</sub> H <sub>6</sub> OCH <sub>3</sub> + HI                                                                                                                                    | 2) 5 x 10°  dinly cons alcohol hydrocarl hydrocarl hese                        | 3 bon bon (2) C <sub>6</sub> H                                 | (3) 5 x 10 <sup>3</sup>                 | (4) 5 x 10                    | 2                                  |
| (1) 5 x 10 <sup>2</sup> (2  54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t  5. C <sub>6</sub> H <sub>6</sub> OCH <sub>3</sub> + HI  vill be: (1) C <sub>6</sub> H <sub>5</sub> I+CH <sub>3</sub> O                                                                     | 2) 5 x 10°  dinly cons alcohol hydrocarl hydrocarl hese                        | 3 bon bon (2) C <sub>6</sub> H                                 | (3) 5 x 10 <sup>3</sup> The prod        | (4) 5 x 10                    | 2                                  |
| (1) 5 x 10 <sup>2</sup> (2)  54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t  5. C <sub>6</sub> H <sub>6</sub> OCH <sub>3</sub> + HI— (III be: (1) C <sub>6</sub> H <sub>3</sub> I+CH <sub>3</sub> O (3) C <sub>6</sub> H <sub>5</sub> OH+CH                            | dinly cons<br>alcohol<br>hydrocarl<br>hydrocarl<br>hese<br>\( \Delta \Delta \) | 3 bon bon (2) C <sub>6</sub> H (4) C <sub>6</sub> H            | (3) 5 x 10 <sup>3</sup> The prod        | (4) 5 x 10                    | e above reactio                    |
| (1) 5 x 10 <sup>2</sup> (2  54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t  55. C <sub>6</sub> H <sub>6</sub> OCH <sub>3</sub> + HI— vill be: (1) C <sub>6</sub> H <sub>5</sub> I+CH <sub>3</sub> O (3) C <sub>6</sub> H <sub>5</sub> OH+CH  56 F3 is:                 | dinly cons alcohol hydrocard hydrocard hese $\Delta\Delta$                     | 3 bon bon (2) C <sub>6</sub> H (4) C <sub>6</sub> H            | The prod                                | ucts in th                    | e above reaction                   |
| (1) 5 x 10 <sup>2</sup> (2  54. Petroleum is ma (1) Aliphatic (2) Aromatic (3) Alipnetic (4) None of t  5. C <sub>6</sub> H <sub>6</sub> OCH <sub>3</sub> + HI— vill be: (1) C <sub>6</sub> H <sub>5</sub> I+CH <sub>3</sub> O (3) C <sub>6</sub> H <sub>5</sub> OH+CH  56 F3 is: (1) Bronsted bas | dinly cons<br>alcohol<br>hydrocarl<br>hydrocarl<br>hese<br>$\Delta\Delta$      | 3 bon bon (2) C <sub>6</sub> H (4) C <sub>6</sub> H Lewis base | The prod                                | ucts in the                   | e above reaction                   |

| (3) $Na_2\{Ag(S_2O_3)_2\}$                                                                                                                                                                   | (4) Na <sub>3</sub> [Ag(S <sub>2</sub> O <sub>3</sub> ) <sub>3</sub> ]                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 59. Molecular oxygen is :                                                                                                                                                                    |                                                                                                                   |
| (1) ferro magnetic (2) diamagn                                                                                                                                                               | etic (3) para magnetic (4) non magnetic                                                                           |
| 60. Bonds in acetylene are :                                                                                                                                                                 |                                                                                                                   |
| (1) $2\pi$ bonds (2) one $\pi$ bo                                                                                                                                                            | nd (3) $3\pi$ bonds (4) none of these                                                                             |
| (1) It gives tertiary alcohol (2) It gives tertiary alcohol (3) It gives secondary alcohol                                                                                                   | with acetamide<br>with acetone                                                                                    |
| (4) It gives primary alcohol                                                                                                                                                                 |                                                                                                                   |
| 62. Which of the following alkan<br>(1) C <sub>20</sub> H <sub>42</sub> (2) C <sub>3</sub> H <sub>8</sub>                                                                                    | e exists is liquid state at normal temperature : $(3) \ C_8 H_{18} \qquad (4) \ CH_4$                             |
| 63. The solubility of AgCI at 25 <sup>0</sup> (1) Potassium chloride solu (2) AgNO <sub>3</sub> solution (3) Water (4) All above                                                             | C will be maximum in :                                                                                            |
| 64. The weight of a benzene mole<br>(1) 78 gm. (2) 7.8 gm.                                                                                                                                   |                                                                                                                   |
| 65. CuFeS <sub>2</sub> is : (1) iorn pyrites (2) n                                                                                                                                           | nalachite (3) chalcosite (4) chalcopyrites                                                                        |
| 66. Primary halides follow the fo<br>(1) SN <sub>1</sub> (2) SN <sub>2</sub>                                                                                                                 | llowing reaction mechanism: (3) both (4) none of these                                                            |
| 67. C and Si belong to the same g (1) liquid (2) gas                                                                                                                                         | group of periodic table, CO <sub>2</sub> is a gas and SiO <sub>2</sub> is a: (3) solid (4) none of these          |
| 68. H <sub>2</sub> S is a gas while H <sub>2</sub> O is a lic<br>(1) there is association due<br>(2) bond energy of OH high<br>(3) the ionization potential<br>(4) the electro negativity of | to hydrogen bonding<br>n<br>of oxygen is high                                                                     |
| 69. "The negative part of the mo                                                                                                                                                             | lecule adding to the double bond goes to that<br>atom which is linked to the least number of<br>t is related to : |

| (4) none of these                                                                                                                                             |                                                                                      |                                                                 |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------|
| 70. The conjugate base of !                                                                                                                                   | NH3 is:                                                                              |                                                                 |           |
| $(1) N_2 H_4$ (2) N                                                                                                                                           |                                                                                      | (4) NH <sub>2</sub> <sup>+</sup>                                |           |
| 71. (a) N <sub>2</sub> and (b) C <sub>2</sub> H <sub>2</sub> . Th                                                                                             | e nos. of π and σ h                                                                  | ond in the molecules are respec                                 | tively:   |
| (1) (a) 2,2 (b) 2,2                                                                                                                                           | (2) (a) 1,2 (b) 2,1                                                                  | 100                                                             | 700       |
| (3) (a) 2,1 (b) 2,3                                                                                                                                           | (4) (a) 2,1 (b) 2,1                                                                  |                                                                 |           |
| 72. In which of the following atoms:                                                                                                                          | ng compound there                                                                    | e are maximum no. of sp <sup>2</sup> hybrid                     | 1 C       |
| (1) Benzene                                                                                                                                                   | (2) 1,3,5-hexatries                                                                  | ne                                                              |           |
| (2) 1,2,4-hexatriene                                                                                                                                          | (4) both 1 and 2                                                                     |                                                                 |           |
| 73. The shape of the molec                                                                                                                                    | ule having hybrid                                                                    | orbitals of 20% character will b                                | e:        |
| (1) octahedral                                                                                                                                                | (2) tetrahedral                                                                      |                                                                 |           |
| (3) square planer                                                                                                                                             | (4) triangular bipy                                                                  | yramidal                                                        |           |
| 74. The pH of a solution is<br>the pH value will be :                                                                                                         | 5. If the dilution o                                                                 | of this solution is increased by 10                             | 0 times,  |
| (1) 5 (2) 7                                                                                                                                                   | (3) 9                                                                                | (4) 8                                                           |           |
| 75. The required amount of hydrocarbon is 50 ml. The (1) C <sub>2</sub> H <sub>2</sub> (2) C <sub>2</sub> 76. The formula of Cel (1) SrSO <sub>4</sub> (2) Sr | hydrocarbon will<br>H <sub>4</sub> (3) C <sub>2</sub> H <sub>6</sub><br>lestine is : |                                                                 |           |
| 327 1 327                                                                                                                                                     |                                                                                      |                                                                 |           |
| 77. CuCl <sub>2</sub> + → Cu + C<br>(1) 4 faraday                                                                                                             |                                                                                      | mount of electricity for this reac<br>) 1 faraday (4) 3 faraday | tion is : |
| 78. Nitrogen does not i                                                                                                                                       |                                                                                      |                                                                 |           |
| (1) The bondener                                                                                                                                              | rgy of N≡N is very l                                                                 | high                                                            |           |
|                                                                                                                                                               | bitals are not presen                                                                | nt                                                              |           |
| (3) N belongs to<br>(4) There is inert                                                                                                                        |                                                                                      |                                                                 |           |
|                                                                                                                                                               |                                                                                      | by 10° C, the rate of reaction w                                | dll be :  |
| (1) lowered by 2                                                                                                                                              | times                                                                                |                                                                 |           |
| (2) increased by                                                                                                                                              | 2 times                                                                              |                                                                 |           |
| (3) lowered by 1                                                                                                                                              | 0 times                                                                              |                                                                 |           |
| (4) increased by                                                                                                                                              | 10 times                                                                             |                                                                 |           |
| 80. Which of the follow chloride:                                                                                                                             | ving gives red prec                                                                  | cipitate with ammonical cuprous                                 | •         |
| (1) Propane (2) Et                                                                                                                                            | hane (3) Methan                                                                      | ne (4) Acetylene                                                |           |

| 81. [Cu(NH <sub>3</sub> ) <sub>4</sub><br>(1) dsp <sup>2</sup> | (2) sp <sup>3</sup> d                                                       | (3) dsp <sup>3</sup>               | dization: (4) sp <sup>3</sup>                             |
|----------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|
|                                                                |                                                                             | and the second                     | ns in it. Which of the following ion is                   |
| capable to                                                     | precipitate all                                                             | of above when                      | added in this solution :                                  |
| (1) Pb <sup>2+</sup>                                           | (2) Ba <sup>2+</sup>                                                        | (3) Hg <sup>2+</sup>               | (4) Cu <sup>2+</sup>                                      |
| 83. Fool's gold                                                | ls:                                                                         | 1502211000000                      | 1000 W. 1200                                              |
| (1) Cu <sub>2</sub> S                                          | (2) FeS <sub>2</sub>                                                        | (3) Al <sub>2</sub> O <sub>5</sub> | (4) CuFeS <sub>2</sub>                                    |
| 84. In which o                                                 | f the following                                                             | compound th                        | e central atom is in sp <sup>2</sup> hybrid state :       |
| (1) OF <sub>2</sub>                                            | (2) HgCl <sub>2</sub>                                                       | (3) XeF <sub>2</sub>               | (4) NH <sub>2</sub> <sup>+</sup>                          |
| 85. The number                                                 | er of alkenyl g                                                             | roups possible                     | from C <sub>4</sub> H <sub>7</sub> are :                  |
| (1) 7                                                          | (2) 5                                                                       | (3) 3                              | (4) 8                                                     |
| (2) Anti<br>(3) Blea                                           | thyl lead mixed<br>ling agent<br>knocking agen<br>ching agent<br>e of these |                                    | rorks as :                                                |
| 87. The alkalin                                                | ne hydrolysis o                                                             |                                    |                                                           |
| (1) dehydro                                                    | genation (2) d                                                              | enydration (3)                     | esterification (4) saponification                         |
| (1) 6.71 x 10                                                  | $0^{-3}$ (2) 1                                                              | .6x10-3                            | acid will be: $(K_a = 1.8 \times 10^{-5})$                |
| (3) 0.4x1.8x                                                   | (4) 1                                                                       | .8x10 <sup>-5</sup>                |                                                           |
| 89. Haber pro                                                  | cess is used for                                                            | r production o                     | f which of the following:                                 |
| (1) NH <sub>3</sub>                                            | (2) HNO <sub>3</sub>                                                        | (3) H <sub>2</sub> SO <sub>4</sub> | (4) O <sub>3</sub>                                        |
| (1) NH <sub>4</sub><br>(2) NH <sub>4</sub>                     | ng titrations it<br>OHand HCI<br>OH and CH <sub>3</sub> CO<br>H and HCI     | can be used a                      | and the pH range is 8-10. In which of<br>s an indicator : |
| 91. Number of                                                  |                                                                             |                                    |                                                           |
| (1) $pb^{2+}$                                                  | (2) $Hg^{2+}$                                                               | (3) Ba <sup>2+</sup>               | (4) Cu <sup>2+</sup>                                      |
| 92. Which of t                                                 | he following sp                                                             | pecies shows ti                    | ne maximum magnetic moment :                              |
| (1) Mn <sup>+6</sup>                                           | (2) Ni <sup>2+</sup>                                                        | (3) $Fe^{3+}$                      | (4) Ag <sup>+</sup>                                       |
| 93. K sp value                                                 | of CaF2 is 3.75                                                             | x 10 <sup>11</sup> The sol         | ubility will be :                                         |

| (1) 1.45x10 <sup>-11</sup> m                                                                                               | nol/litre-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (2) 3.45x10 <sup>-4</sup> mc                                                                                               | ol/liter*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| (3) 2.05x10 <sup>-4</sup> mc                                                                                               | ol/liter*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| (4) 3.75 x 10 <sup>-11</sup> r                                                                                             | mol/liter*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| 94. When Pb <sub>3</sub> O <sub>4</sub> is hea<br>(1) pbO <sub>2</sub> and pb(<br>(2) pbO and pb(1<br>(3) pbO <sub>2</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (4) pbO                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 95. C-H bond length is<br>(1) Acetylene (2) M                                                                              | s least in :<br>Methane (3) Ethylene (4) Ethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 96. The minimum nos. isomerism will be:                                                                                    | 7 - 1 TO SELECTION - DESCRIPTION - DESCRIPTI |     |
| (1) Seven (2) fo                                                                                                           | our (3) six (4) five                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 97. Which of the follow CaCl <sub>2</sub> :                                                                                | wing organic compound could not be dried by anhydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ous |
| (1) ethanol (2) be                                                                                                         | enzene (3) chloroform (4) ethyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 98. Which of the follow<br>water:                                                                                          | wing compound forms white precipitate with bromine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| (1) Nitrobenzene                                                                                                           | (2) Phenol (3) Benzene (4) all above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 99. Gypsum is:                                                                                                             | The second secon |     |
| (1) CaSO <sub>4</sub> .H <sub>2</sub> O                                                                                    | (2) CaSO <sub>4</sub> . 2H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| (3) 2CaSO <sub>4</sub> . 2H <sub>2</sub> O                                                                                 | (4) CaSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 100.Which of the follow                                                                                                    | wing carbonium ion is most stable :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| (1) CH <sub>3</sub> -C—CH <sub>3</sub>                                                                                     | (2) CH <sub>3</sub> CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| CH <sub>3</sub>                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| (3) CH <sub>3</sub> 0CH-CH <sub>3</sub>                                                                                    | (4) CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

## ANSWER SHEET

|         |        |        |        | 4 84 75 |        |        |           |        |        |        |
|---------|--------|--------|--------|---------|--------|--------|-----------|--------|--------|--------|
| 1.(2)   | 2.(3)  | 3.(3)  | 4.(2)  | 5.(2)   | 6.(4)  | 7.(1)  | 8.(3)     | 9.(1)  | 10.(4) | 11.(1) |
| 12.(1)  | 13.(2) | 14.(4) | 15.(2) | 16.(4)  | 17.(3) | 18.(2) | 19.(2)    | 20.(2) | 21.(1) | 22.(2) |
| 23.(3)  | 24.(4) | 25.(4) | 26.(3) | 27.(3)  | 28.(3) | 29.(2) | 30.(3)    | 31.(3) | 32.(1) | 33.(2) |
| 34.(3)  | 35.(2) | 36.(3) | 37.(2) | 38.(1)  | 39.(4) | 40.(4) | 41.(3)    | 42(3)  | 43.(3) | 44.(2) |
| 45.(3)  | 46.(3) | 47.(1) | 48.(1) | 49.(1)  | 50.(1) | 51.(2) | 52.(1)    | 53.(2) | 54.(3) | 55.(3) |
| 56.(3)  | 57.(4) | 58.(3) | 59.(3) | 60.(1)  | 61.(1) | 62.(3) | 63.(3)    | 64.(3) | 65.(4) | 66.(1) |
| 67.(3)  | 68.(1) | 69.(1) | 70.(2) | 71.(3)  | 72.(4) | 73.(4) | 74.(2)    | 75.(1) | 76.(2) | 77.(2) |
| 78.(2)  | 79.(2) | 80.(4) | 81.(1) | 82.(1)  | 83.(2) | 84.(4) | 85.(4)    | 86.(2) | 87.(4) | 88.(1) |
| 89.(1)  | 90.(3) | 91.(1) | 92.(3) | 93.(3)  | 94.(1) | 95.(1) | 96.(4)    | 97.(1) | 98.(2) | 99.(2) |
| 100.(1) |        |        |        |         |        |        | 100011000 |        |        |        |

